This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

STERIC AND STEREOCHEMICAL LIMITATIONS IN THE SUBSTITUTION REACTIONS OF MANGANESE AND RHENIUM CARBONYL BROMIDE WITH DIASTEREOMERIC DIAZAPHOSPHOLE LIGANDS

Graziano Baccolini^a; Luigi Busetto^a; Leonardo Contessa^a; Vincenzo Albano^b; Francesco Demartin^c
^a Facoltà di Chimica Industriale, Università, Bologna, Italy ^b Istituto Chimico "G. Ciamician," Facoltà di Scienze, Università, Bologna, Italy ^c Istituto Chimica Generale, Università, Milano, Italy

To cite this Article Baccolini, Graziano , Busetto, Luigi , Contessa, Leonardo , Albano, Vincenzo and Demartin, Francesco(1984) 'STERIC AND STEREOCHEMICAL LIMITATIONS IN THE SUBSTITUTION REACTIONS OF MANGANESE AND RHENIUM CARBONYL BROMIDE WITH DIASTEREOMERIC DIAZAPHOSPHOLE LIGANDS', Phosphorus, Sulfur, and Silicon and the Related Elements, 19: 3, 319 - 325

To link to this Article: DOI: 10.1080/03086648408077596 URL: http://dx.doi.org/10.1080/03086648408077596

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

STERIC AND STEREOCHEMICAL LIMITATIONS IN THE SUBSTITUTION REACTIONS OF MANGANESE AND RHENIUM CARBONYL BROMIDE WITH DIASTEREOMERIC DIAZAPHOSPHOLE LIGANDS

GRAZIANO BACCOLINI, LUIGI BUSETTO and LEONARDO CONTESSA

Facoltà di Chimica Industriale, Università, Viale Risorgimento 4, 40136 Bologna, Italy

VINCENZO ALBANO

Istituto Chimico "G. Ciamician," Facoltà di Scienze, Università, Via Selmi 2, 40126 Bologna, Italy

FRANCESCO DEMARTIN

Istituto Chimica Generale, Università, Via Venezian 21, 20133 Milano, Italy

(Received November 22, 1983)

Thermal substitution reactions of $M(CO)_5Br$ (M=Mn, Re) with cis (L_c) and trans (L_t) diazaphosphole ligands (L=3,4-dihydro-2,3,4,5-tetraphenyl-2H-1,2,3-diazaphosphole) have been studied. It has been found that L_c behaves as generally found for bulky phosphines affording to cis- $M(CO)_4(L_c)Br$, mer- $M(CO)_3(L_c)_2Br$ and fac-Re($CO)_3(L_c)_2Br$ which has been thermally isomerized to mer-Re($CO)_3(L_c)_2Br$. In contrast the corresponding reaction with the bulkier trans diazaphosphole isomer L_t have only afforded cis- $M(CO)_4(L_t)Br$ and mer- $M(CO)_3(L_t)_2Br$. All the different stereochemical results are rationalized on the basis of the size of the central metals and of the steric demand of the ligands. The nature of the complexes has been established essentially by IR spectra which, in the case of cis-Re($CO)_4(L_c)Br$ presents in cyclohexane solution a doubling of all the characteristic $\nu(CO)$ bands expected for the $C_{2\nu}$ local symmetry. This unexpected result has been tentatively discussed also on the light of an X-ray study which has confirmed the cis nature of this complex.

INTRODUCTION

It is well known that steric and electronic factors play an important role in ligand substitution reactions of octahedral carbonyl derivatives and in particular steric effects have recently received considerable attention in these^{1,2} and related processes.³

However the distinction between steric and electronic effects due to the phosphine ligands can be merely semantic when the different steric demand is achieved by changing the substituent on the phosphorus atom. Nevertheless this is not more a priori true when the ligand bulkiness variations are attributable only to diastereomeric forms.

We have recently investigated the complex forming properties^{4,5} of two diastereomeric phosphines L_c and L_t having large and different cone angles but practically identical electronic properties. In particular we have found⁵ that the substitution reactions of group 6B metal carbonyls give rise to different stereochemical results which have been explained by invoking fluxional five-coordinate intermediates in which only steric factors play a decisive role in determining the geometry and then the products distribution.

Ph
N-Ph
Ph
N-Ph

$$L_c$$

 $M(CO)_5L + L \rightarrow M(CO)_4L_2 + CO$
 $(M = Cr, Mo, W; L = L_c \text{ or } L_t)$

In order to obtain further evidences in this direction we have now investigated the reaction of $M(CO)_5Br$ (M = Mn, Re) with our diazaphosphole system L_c and L_t . We have found that the isomer distribution is not only influenced by the ligand size but also by the nature of the central metal.

An X-ray study on cis-Re(CO)₄(L_c)Br is also reported.

RESULTS AND DISCUSSION

Bromopentacarbonylmanganese reacted in dichloromethane at refluxing temperature for about 1 hr with 1 mole of L_c to give cis-Mn(CO)₄(L_c)Br which, with an additional mole of L_c under the same experimental condition, yielded after about 2 hrs only mer-Mn(CO)₃(L_c)₂Br (see Scheme 1). All attempts at detecting the most electronically favoured facial isomer, also in the first time of reaction, failed. In addition we have found that heating cis-Mn(CO)₄(L_c)Br in CH₂Cl₂ for about 2 hrs gave mer-Mn(CO)₃(L_c)₂Br as the only tricarbonyl species. The latter complex was separated by column chromatography from a mixture containing also cis-Mn(CO)₄(L_c)Br and Mn(CO)₅Br. These findings are in agreement with previously reported results on analogous reactions involving various phosphine ligands.⁶

The diastereomeric L_t form of the diazaphosphole system behaves differently from L_c in reacting with $Mn(CO)_5Br$. In fact no formation of mer- $Mn(CO)_3(L_t)_2Br$ is observed, but only the cis- $Mn(CO)_4(L_t)Br$ has been isolated after five days in refluxing CH_2Cl_2 or after 1 hr at 60°C in benzene. At higher temperature (refluxing benzene) and/or in the presence of an excess of L_t only small variable amounts (5–10%) of a red product containing carbonyl groups, not yet characterized, has been isolated.

The cis-Re(CO)₄(L_c)Br has been obtained by refluxing equimolar quantities of L_c and Re(CO)₅Br in chloroform for about 2 hrs; no formation of *trans* isomer⁷ has been observed. In contrast to the behaviour of the analogous manganese derivatives

Carbonyl stretching frequencies ^a (CH ₂ Cl ₂ solution) ν(CO), cm ⁻¹				
	b 2085 (m)	2020 (m)	2005 (vs)	1978 (s)
Br	2040 (w)	1960 (vs)	1950 (m)	• •
	2090 (m)	2020 (s)	2005 (vs)	1970 (s)
	b 2090 (m)	2025 (s)	2005 (vs)	1975 (vs)
	2100 (m)	2020 (s)	2005 (vs)	1955 (m)
	b 2110 (m) 2100 (m)	2030 (s) 2020 (m)	2005 (vs) 2000 (vs)	1970 (m) 1955 (s)

1925 (s)

1920 (m)

2010 (vs)

2010 (vs)

1940 (m)

1960 (m)

1965 (m)

TABLE I

1960 (s)

2020 (s)

2030 (s)

1975 (vs)

1970 (vs)

2040 (s)

2040 (w)

2110 (m)

b 2110 (m)

Compd. cis-Mn(CO) L Br $mer-Mn(CO)_3L_{c_2}E$ cis-Mn(CO) L, Br cis-Re(CO)₄L_cBr

fac-Re(CO)3Lc2Br

mer-Re(CO)₃L_c,Br

mer-Re(CO)4L1,Br

cis-Re(CO)₄L₁Br

the reaction with a further mole of L_c in refluxing CHCl₃ affords fac-Re(CO)₃(L_c)₂Br which can be completely converted to the mer-isomer by refluxing a CHCl₃ or a *n*-hexane solution for 4 or 1 day respectively (see Scheme 1). The reactivity of L_c is similar to that found for other bulky phosphines⁵ which give the same products distribution in reacting with Re(CO)₅Br. In contrast the cis-Re(CO)₄(L₁)Br, prepared by refluxing for about one day a CHCl₃ solution of equimolar amounts of $Re(CO)_5Br$ and L_t , produces only the mer-isomer in reacting with L_t in refluxing CHCl₃ for 4 days.

All the carbonyl complexes have been purified by column chromatography and their nature assigned by IR spectroscopy in CH₂Cl₂ solvent (Table I).

The results described above and collected on the following scheme may be rationalized on the basis of two main factors: (i) the size of the central metal; (ii) the steric demand of the ligands. The influence of the metal is well demonstrated by the lack of formation of the facial isomer of L, in the case of the smaller manganese atom. The steric role of the phosphine is outlined in all the reactions which involve the L, ligand. In fact whereas L, behaves as a bulky phosphine⁶ and its reactivity in

$$\begin{aligned} & \textit{cis-Mn}(CO)_4(L_c)Br + L_c \rightarrow \textit{mer-Mn}(CO)_3(L_c)_2Br + CO \\ & \textit{cis-Mn}(CO)_4(L_t)Br + L_t \rightarrow \textit{no mer or fac-isomers} \\ & \textit{cis-Re}(CO)_4(L_c)Br + L_c \rightarrow \textit{fac-Re}(CO)_3(L_c)_2Br + CO \\ & \textit{fac-Re}(CO)_3(L_c)_2Br \rightarrow \textit{mer-Re}(CO)_3(L_c)_2Br \\ & \textit{cis-Re}(CO)_4(L_t)Br + L_t \rightarrow \textit{mer-Re}(CO)_3(L_t)_2Br + CO \end{aligned}$$

^{2060 (}w) a vs = very strong; s = strong; m = medium; w = weak.

^bIn cyclohexane solution.

substitution processes may be predictable on the basis of its cone angle which is about 145°, the L₁ ligand owing to the larger cone angle ($\sim 190^{\circ}$)⁸ do not display the same reactivity trend. Thus the steric limitation of L₁ does not allow neither formation of mer and fac isomers in the case of Mn nor fac isomers in the case of the larger rhenium atom which generally accommodates phosphine ligands in facial positions. However the relief of steric inter-ligands interactions due to the increasing size of the central metal, permits the isolation of mer-Re(CO)₃(L₁)₂Br in contrast with the behaviour of the manganese derivatives. It should be pointed out that all the conclusions described herein have been deduced without invoking electronic factors which can be ruled out by the diastereomeric nature of the phosphine ligands.

SPECTRAL DATA AND STRUCTURAL DETERMINATION

The results of infrared analyses of the cis, mer and fac carbonyl complexes are collected in Table I. The small differences observed in the $\nu(CO)$ absorptions in going from L_c derivatives to the corresponding ones containing L_t are an indication that the different steric properties of the two ligands do not induce significant electronic effects in these systems.

The infrared spectra of tricarbonyl complexes unequivocally distinguishes between facial and meridional isomers, showing three $\nu(CO)$ strong bands of similar intensity for fac and three bands of different intensity for mer species. However, IR spectra of mer derivatives do not permit the exact assignment of the two possible mer-isomers. We think, by analogy to previously reported examples that the mer-trans is the more probable configuration for our complexes.

Unexpectedly the IR spectrum in cyclohexane of cis-Re(CO)₄(L_c)Br in the ν (CO) region shows a doubling of the typical absorption pattern due to the C_{2v} local symmetry (see Table I). This result was not observed in the analogous Re(CO)₄(L_t)Br and Mn(CO)₄(L)Br which present the usual solvent effect observed in the ν (CO) of carbonyl complexes when the solvent is changed from CH₂Cl₂ to cyclohexane.^{10,11} In addition the ¹³C NMR spectra is in agreement with the cis configuration of the Re(CO)₄(L_c)Br.

For obtaining an unequivocal assignment of the proposed geometry a single crystal X-ray structural determination was performed. The results of this study indicates that the rhenium atom is octahedrally coordinated by four CO ligands, one bromine atom and the phosphorus atom of the L_c ligand as shown in Figure 1. The data for relevant bond distances and angles can be obtained from the authors. The bromine and the phosphorus atoms occupy cis positions and the rhenium coordination sphere has idealized C_s symmetry. The bulky ligand bearing the phosphorus donor atom does not significantly affect regular coordination at the metal atom. Due to the lack of symmetry of the L_c ligand the molecule is unsymmetrical. The crystal, however, is centric and contains equal amounts of enantiomeric molecules held together by van der Waals forces. As bonds parameters have been determined with limited accuracy they are not worth detailed discussion. The bond values in the L_c ligand are comparable with those found in the previous structural determination of cis-Mo(CO)₄(L_c)₂.⁵

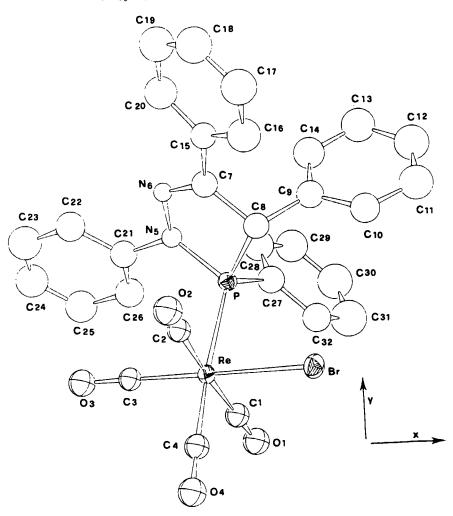


FIGURE 1 Molecular structure of cis-Re(CO)₄(L_c)Br.

The structural investigation confirms the cis-assignment of the $Re(CO)_4L_cBr$, but as expected does not give any information in order to explain the observed doubling of $\nu(CO)$ (see above). Nevertheless the results in our hand cannot exclude an explanation based on the presence of two or more conformers in solution because of the C_s coordination symmetry of the molecule. Moreover, the fact that this unusual IR pattern is displayed only in the case of cis-Re(CO)₄(L_c)Br indicates that cooperative motions of the ligands which give rise to conformers, are more favoured with the less bulky ligand L_c and with larger rhenium atom. It follows that in the case where the steric compression between ligands is higher, as in complexes of the type $Re(CO)_3(L_c)_2Br$, it will be probably possible to separate conformers of the same coordination geometry.

Further studies are under way in this direction and will be reported later.

EXPERIMENTAL

All reactions were carried out on an atmosphere of oxygen-free nitrogen and all the solvents were dried according to established procedures. Infrared spectra were recorded on a Perkin-Elmer model 180 Spectrometer using 0.5 mm cells; ¹H and ¹³C NMR spectra were recorded on a Varian XL 100, operating at 100 and 25.15 MHz respectively. Melting points are uncorrected. Diazaphosphole ligands L_c, L_t were prepared as described previously. ¹² Mn(CO)₅Br¹³ and Re(CO)₅Br¹⁴ were prepared by published methods. Microanalyses were performed on pure complex isomers as well as on mixture of isomers: the results obtained were practically identical. Column chromatography was performed with silica gel of particle size 0.05–0.2 mm.

Preparation of cis- $Mn(CO)_4(L_c)Br$. Equimolar amounts of L_c (0.4 g, 1 mmol) and $Mn(CO)_5Br$ were refluxed in 100 ml of dichloromethane for 1 hr and the course of the reaction followed by t.l.c. after evaporation of the solvent, the reaction mixture was chromatographed on a silica gel column. Elution with a 35:2:2 mixture of n-hexane-benzene-diethyl ether gave the title complex (Rf. 0.35) in 75% yield, small amounts of the starting materials L_c (Rf. 0.50) and $Mn(CO)_5Br$ (Rf. 0.25). Crystallization of the tetracarbonyl complex from CH_2Cl_2-n -pentane afforded a pale yellow crystals with m.p. 163-165°C. Anal. Calcd. for $C_{30}H_{21}N_2O_4PBrMn$: C, 56.34; H, 3.24; N, 4.38. Found: C, 56.5; H, 3.1; N, 4.5.

Preparation of mer-Mn(CO)₃(L_c)₂Br. Equimolar quantities of Mn(CO)₄(L_c)Br and L_c were refluxed in dichloromethane for 2 hrs, and the course of the reaction was followed by t.l.c. The reaction mixture was chromatographed on silica gel column and elution with the same mixture gave the title complex (Rf. 0.20) as the only product. Crystallization from CH₂Cl₂-n-hexane afforded yellow crystals with m.p. 148-150°C. Alternatively, when Mn(CO)₄(L_c)Br was refluxed in dichloromethane, for 3 hrs, mer-Mn(CO)₃(L_c)₂Br was obtained together with small amounts of tetracarbonyl complex and Mn(CO)₅Br. No formation of fac-Mn(CO)₃(L_c)₂Br was observed in either case. Anal. Calcd. for C₅₅H₄₂N₄O₃P₂BrMn: C, 66.0; H, 4.19; N, 5.58. Found: C, 65.7; H, 4.1; N, 5.4.

Preparation of cis- $Mn(CO)_4(L_t)Br$. Diazaphosphole ligand L_t (0.4 g, 1 mmol) was added to a suspension of $Mn(CO)_5Br$ (1 mmol) in benzene, the mixture was allowed at 60°C for about 2 hrs and the course of reaction was followed by t.l.c. The title complex (Rf. 0.21) was separated by column chromatography using the same eluent and was crystallized (m.p. 138–140°C) from *n*-hexane. Anal. Calcd. for $C_{30}H_{21}N_2O_4PBrMn$: C, 56.34; H, 3.24; N, 4.38. Found: C, 55.9; H, 3.2; N, 4.8.

The reaction of cis-Mn(CO)₄(L_t)Br with a further mole of L_t did not give Mn(CO)₃(L_t)₂Br also after 3 days at refluxing benzene, but a new carbonyl complex was observed. This unstable complex was separated by column chromatography (Rf. 0.47) eluting with the same mixture and crystallized from *n*-hexane gave red impure crystals (m.p. 168–170°C). IR (cyclohexane): 2095 (w) 2010 (m) 2000 (vs) 1975 (m) 1950 (m) 1940 (m) cm⁻¹.

Preparation of cis-Re(CO)₄(L_c) Br. Equimolar amounts of L_c (0.4 g, 1 mmol) and Re(CO)₅Br were refluxed in 100 ml of chloroform for 4 hrs and the course of the reaction followed by t.l.c. Chromatography of the resulting mixture on a silica gel column eluting with 30:2:1 solution of n-hexane-benzene-diethyl ether, afforded the title complex (Rf. 0.22) in 80% yield. Crystallization of this complex from CH₂Cl₂ and n-hexane gave white crystals, with m.p. 183–185°C. ¹³C (CDCl₃): δ C_{trans-Br}, (d) 184.1 (J_{PC} 12 Hz); C_{trans-P}, (d) 181.0 (J_{PC} 60 Hz); C_{cis-P}, (m) 181.25. Anal. Calcd. for C₃₀H₂₁N₂O₄PBrRe: C, 46.75; H, 2.73; N, 3.64. Found: C, 46.5; H, 2.5; N, 3.5.

Preparation of fac-Re(CO) $_3(L_c)_2$ Br. Equimolar quantities of cis-Re(CO) $_4(L_c)$ Br and L_c were refluxed in chloroform for a day and the course of the reaction was followed by t.l.c. The reaction mixture was chromatographed on silica gel column and elution with the above solution gave the title complex (Rf. 0.12) which by crystallization from n-hexane afforded white crystals, m.p. 165–170°C. From this reaction small amounts of mer-isomer (Rf. 0.10) were also obtained.

Isomerization of fac to mer-Re(CO)₃(L_c)₂Br. Refluxing a solution of fac-Re(CO)₃(L_c)₂Br in chloroform for 4 days or in n-hexane for 1 day gave complete isomerization to mer-Re(CO)₃(L_c)₂Br. This complex (Rf. 0.10) was separated by column chromatography eluting with the above eluant and crystallized from n-hexane gave white plates, m.p. 158–160°C. Anal. Calcd. for $C_{55}H_{44}N_4O_3P_2BrRe$: C, 58.20; H, 3.70; N, 4.94. Found: C, 57.9; H, 3.5; N, 4.9.

Preparation of cis-Re(CO)₄(L_t) Br. Equimolar solution of Re(CO)₅Br and L_t in chloroform was refluxed for about 1 day. Chromatography of the resulting mixture, eluting with the above solution, afforded the title complex (Rf. 0.35) which was crystallized from CH₂Cl₂-n-hexane giving white needles (m.p. 145-146°C). ¹³C (CDCl₃): δ C_{trans-Br}, (d) 184.1 (J_{PC} 12 Hz); C_{trans-Pr}, (d) 180.75 (J_{PC} 60 Hz);

 C_{cis-P} , (d) 179.3 (J_{PC} 12 Hz). Anal. Calcd. for $C_{30}H_{21}N_2O_4PBrRe$: C, 46.75; H, 2.73; N, 3.64. Found: C, 46.5; H, 2.7; N, 3.6.

Preparation of mer-Re(CO)₃(L_c)₂Br. Refluxing equimolar solution of cis-Re(CO)₄(L_t)Br in chloroform for 4 days gave exclusively mer-Re(CO)₃(L_t)₂Br which was isolated by chromatographic separation (Rf. 0.05) eluting with the same mixture. This complex, crystallized from n-hexane, had m.p. 178–180°C. No evidence of formation of fac-isomer was observed during this reaction. Anal. Calcd. for $C_{55}H_{42}N_4O_3P_2$ BrRe: C, 58.20; H, 3.70; N, 4.94. Found: C, 58.1; H, 3.6; N, 4.9.

X-Ray Data Collection and Structure Determination. $C_{30}H_{21}BrN_2O_4PRe$, M=770.6, colourless monoclinic prisms, space group P $2_{1/n}$, a=15.671(2), b=10.343(2), c=18.927(3) Å, $\beta=111.51(1)^\circ$, V=2854 Å³, Z=4, $D_c=1.793$ g cm⁻³, μ (Mo-K_a) = 57.9 cm⁻¹. Intensity data were collected on an Enraf-Nonius CAD-4 automatic diffractometer. Two octants of the reciprocal space were explored with the ω -scan technique in the 2θ range $6-50^\circ C$. The standard CAD-4 centering, indexing and data collection programs were used. An empirical absorption correction was made. 5142 reflection intensities were collected but only $1575|I>3\sigma(I)|$ were used because of the poor quality of the crystal. The structure was solved by conventional Patterson and Fourier methods. The structure model was refined by full matrix least-squares calculations. Rhenium, bromine and phosphorus atoms were allowed to vibrate anisotropically; the other atoms isotropically. The hydrogen atoms were placed in their expected positions but not refined. The final conventional R and weighted R' agreement indices were 0.046 and 0.050, respectively. A difference Fourier map computed after refinement did not reveal significant features. All the computations were carried out on a PDP 11/34 computer using the SDP package of crystallographic programs. The fractional coordinates of the structure model, the thermal parameters and the structure factors can be obtained on application to the authors.

ACKNOWLEDGMENTS

We wish to thank the Italian C.N.R. for financial support.

REFERENCES AND NOTES

- 1. F. A. Cotton, D. J. Darensbourg, S. Klein and B. W. S. Kolthammer, Inorg. Chem., 21, 1651 (1982).
- 2. M. J. Woukulich and J. D. Atwood, Organomet., 1, 1316 (1982).
- N. Bresciani Pahor, L. Randaccio, P. G. Toscano, A. C. Sandercock and L. Marzilli, J. Chem. Soc. Dalton Trans., 129 (1982).
- 4. G. Baccolini and L. Busetto, Synth. React. Inorg. Met.-Org. Chem., 9, 263 (1979).
- 5. G. Baccolini, L. Busetto and E. Foresti, J. Chem. Soc. Dalton Trans., 1544 (1981).
- 6. A. M. Bond, R. Colton and M. E. McDonald, Inorg. Chem., 17, 2842 (1978).
- 7. E. Singleton, J. T. Moelwyn-Hughes and A. W. B. Garner, J. Organ Met. Chem., 21, 449 (1970).
- 8. Measured relatively crudely from molecular models: See C. A. Tolman, Chem. Rev., 77, 313 (1977).
- 9. R. J. Angelici, F. Basolo, and A. J. Poe, J. Amer. Chem. Soc., 85, 2215 (1963).
- 10. D. M. Adams, "Metal-Ligand and Related Vibrations," Arnold, London (1967).
- 11. P. S. Braterman, "Metal Carbonyl Spectra," Academic Press, N.Y. (1975).
- 12. G. Baccolini and P. E. Todesco, J. Org. Chem., 40, 2318 (1975).
- 13. E. W. Abel and G. Wilkinson, J. Chem. Soc. A, 1959, 1501.
- 14. J. C. Hilleman, D. K. Huggins and I. D. Kaesz, Inorg. Chem., 1, 933 (1962).